P4. . reference compiler
implementation architecture

June 2021
Mihai Budiu (mbudiu-vmw)

mbudiu@vmware.com

What is this?

* A compiler for P4,
* P4 = a language for programmable networks; see http://p4.org
* Compiles both P4, (i.e., P4 v1.0 and P4 v1.1) and P4, programs

* P4, specification: https://github.com/p4lang/p4-
spec/tree/master/p4-16/spec

* Apache 2 license, open-source, reference implementation
* http//github.com/p4lang/p4c

http://p4.org/
https://github.com/p4lang/p4-spec/tree/master/p4-16/spec
http/github.com/p4lang/p4c

Compiler goals

e Support current and future versions of P4

e Support multiple back-ends
* Generate code for ASICs, NICs, FPGAs, software switches and other targets

* Provide support for other tools (debuggers, IDEs, control-plane, etc.)
* Open-source front-end
e Extensible architecture (easy to add new passes and optimizations)

* Use modern compiler techniques
(immutable IR, visitor patterns, strong type checking, etc.)

 Comprehensive testing

What’s in the box

 Compiler source code (C++)

e Two front-ends

currently alpha quality release

P4,, (v1.0,v1.1)
P4,

* Converter P4,, => P4,
* Multiple back-ends:

eBPF => generates C code that can be compiled to extended Berkeley Packet
Filters programs

uBPF => C code that can be compiled to user-space BPF

bmv2 => generates JSON files that can be used to drive the simple_switch
network simulator built using BMv2 (behavioral model version 2)

p4test => fake test back-end
p4c-dpdk => generates DPDK assembly code to run in user-space
bmv2 psa => generates JSON for the PSA network simulator using BMv?2

Example usage

* To pretty-print and validate a P4 file
pdtest --pp out.pd4 file.p4d

* To convert a P4, file to P4,
pdtest --pp out.pd4 --std p4-14 file.p4d

* To compile a P4, file for the BMv2 simulator:
pdc-bm2-ss -o file.json --std p4-14 file.p4d

* To compile a P4 file for EBPF (via C):
pdc-ebpf -0 file.c file.p4d

./p4c-bm2-ss: Compile a P4 program

--help Print this help message

--version Print compiler version A fragment of the output
-I path Specify include path (passed to preprocessor)

-D arg=value Define macro (passed to preprocessor)

-U arg Undefine macro (passed to preprocessor)

-E Preprocess only, do not compile (prints program on stdout)
--nocpp Skip preprocess, assume input file is already preprocessed.
--std {14]|16} Specify language version to compile

--target target Compile for the specified target

--arch arch Compile for the specified architecture.

--pp file Pretty-print the program in the specified file

--toJSON file Dump IR to JSON in the specified file.

--p4runtime-file file Write a control-plane API description to the specified file.
--p4runtime-entres-file file Write static table entries as a P4Runtime WriteRequest message to
the specified file.

--p4runtime-format f Chose output format, one of {binary, json,text}.

-0 outfile Write output to outfile

--Wdisable[=diagnostic] Disable a compiler diagnostic, or disable all warnings
--Werror Treat all warnings as errors.

-T loglevel [Compiler debugging] Adjust logging level per file (see below)
-V [Compiler debugging] Increase verbosity level (can be repeated)

--top4d passl[,pass2] [Compiler debugging] Dump the P4 representation after

passes whose name contains one of “~passX' substrings.

When '-v' is used this will include the compiler IR.
--dump folder [Compiler debugging] Folder where P4 programs are dumped
--emit-externs [BMv2 back-end] Force unknown externs to be emitted in the back-end.

How do | get started writing compiler code?

* Read the P4, spec
* Browse the *.def IR definition files and understand what they represent
* Understand the visitor interfaces (Inspector, Transform)

* Read the documentation to know what tools are available
* The compiler doxygen documentation (still incomplete)
* This document, especially the section “IR and Visitors”

* Browse the code top-down (starting from main) —

e =
. \P l‘
s ’__ ” o O
Q - .
>, 'V‘ D
o)

-
S e
// - ¥

-

Presentation Qutline

* Compiler architecture

* Compiler source code organization
* IR and visitors

* A guide to the provided passes
* Front-end passes
* Mid-end passes

e Sample back-ends

Compiler architecture

Compiler structure

IR with target-specific
Same IR extensions

|

P4 y Front-end g |R § Mid-end p |R) Back-end

Y
Target-independent Target-specific
~48 distinct passes ~33 distinct passes

Structure

Fixed

Library of pre-built passes

P4 * Front-end

_

~

» IR

J

libFrontEnd.a

nd match Custom

i

ﬁ Mid-end * IR * Back-end

_

~

/

main()

Simplify IR eliminating constructs gradually >

11

Compiler flow

Arch
definition

Libraries

User
program

P4

Front-end

IR

Mid-end

Architecture-
specific
policies

IR

Control-plane
AP|

Back-end

Output file

Debugging
information

Architecture
details

Compilation stages

* Front-end:
* Completely architecture-independent
* Program validation, type checking
* Architecture-independent lowering and optimizations
* Mid-end:
 architecture independent optimizations driven by architecture-dependent policies
 Same base IR as front-end

* Back-end:
 Completely target-dependent
* Resource allocation, code generation
* Can use a custom IR

13

Front-end passes
* Program parsing
* Validation

* Name resolution -

* Type checking/type inference (Hindley-Milner)

* Make semantics explicit (e.g. order side-effects)

* Optimizations

* Inlining

* Compile-time evaluation & specialization

* Conversion to P4 source

* Deparser inference (for P4, programs)

After the front-end the control-plane APl is generated

14

Mid-end passes

* Mid-end is different for each target

* Assembled from a library of existing passes
* Optimizations
* Create actions / tables from statements and actions
* Eliminate tuple and enum types
* Predicate code (convert ifs to ?:)
* Etc.

15

Back-end passes >
* Target-specific =

e Can backtrack, even back into mid-end
(allows early passes to remake bad decisions)

* Lower code further to remove idioms not supported by target

e Resource allocation
* Table allocation and placement
* Register allocation
e Parser timing and control
» Allocate “extern” resources

» Target specific optimizations
* Code generation

16

Implementation details

* Common infrastructure for all compiler passes
* Same IR and visitor base classes
 Common utilities (error reporting, collections, strings, etc.)

* C++11, using garbage-collection (-lgc)

* Clean separation between front-end, mid-end and back-end
* New mid+back-ends can be added easily

* IR can be extended (front-end and back-end may have different IRs)
* IR can be serialized to/from JSON
* Passes can be added easily

P4 Language Layered Design

Syntactic sugar

Target
language

Core 0 Core
Back-end
language mid-end language

* Many language constructs are eliminated entirely in the front-end/mid-end
e Syntactic sugar constructs are thus automatically supported by all back-ends

Additional documentation

* All documentation is in the source tree

* Source files are commented with doxygen

* Root of the documentation is in the docs/ folder of the source tree
* Provides links to other documentation files

* Each back-end can have additional documentation

19

Source Code Organization

Repository

* https://github.com/p4lang/p4c.git

* Required software is described in README.md
* Need a U*X system (Linux or MacOS)

* To build:

cd p4c
./bootstrap.sh
cd build

make -3j4

make check -j4

21

Build process

ir-generator
code

IR.def

backend.
def

IR definition files

c++ compiler

ir-generator

libpdc
toolkit.a
backend midend
code code
frontend c++ compiler
code
link libfrontend.a
ir.*
visitor.*
— flex
IR and visitor bison
C++ code __
p4lexer.ll, vllexer.ll,
pdparser.ypp vlparser.ypp

p4
compiler

Compiler data flow

mid- ebpf C code
end back-end

P4 Paig V1 — convert

14 parser IR :
mid- BMv2 JSON
IR frontend IR end back-end
P4,

P46 parser mid- :;(\):nr E?ffﬁ?.c

end code

backend

source
organization

pdc

I— build

— backends

— ebpf

F—— pdtest
— graphs

recommended place to build binary

"fake" back-end for testing
extended Berkeley Packet Filters back-end
backend that can draw graphiz graphs of P4 programs

L— bmv2 behavioral model version 2 (switch simulator) back-end
— control-plane control plame API
— docs documentation
| L — dovygen documentation gepecation supooct
— extensions
L— wxxx symlinks to custom back-ends

— ir

— 1ib

— midend
— test

— tools

— stf

—— testdata

P " '
I UTTECTiny S

F—— Commaon
F—— parsers
— pa-14

— pd4include

L— gtest

— driver

— 1ir-generator

— pd4_16_samples

— pd4_l6_errors
pd_16_samples_outputs
pd_16_errors_outputs
pd4_16_bmv_errors

vl 1 samples
pd_14 errors

pd_ 14 errors_outputs
pd_14 samples
p4_14 samples_outputs

pd_14 errors

common front-end code

parser and lexer code for P4_14 and P4_16

P4 14 front-end

P4 _16 front-end

core internal representation

common utilities (libpd4toolkit.a)

code that may be useful for writing mid-ends

standard P4 files needed by the compiler (e.g., core.pd4)
test code

unit test code written using gtest

external programs used in the build/test process

pdc compiler driver: a script that invokes various compilers
Python code to parse STF files (used for testing P4 programs)
code for the IR C++ class hierarchy generator

test inputs and reference outputs

P4 16 input test programs

P4_16 negative input test programs

Expected outputs from P4_16 tests

Expected outputs from P4_16 negative tests

P4 16 negative input tests for the bmvZ backend

P4 vi.1 sample programs

P4 14 negative input test programs

Expected outputs from P4_14 negative tests

P4_14 input test programs

Expected outputs from P4_14 tests

P4 14 negative input test programs

24

Makefiles

* Using CMake

* The makefiles edited by humans are all called
CMakelLists.txt

* There are multiple files, in various folders

Unified builds

* Special trick for compiling C++ programs

* Compiles together many files, and saves times on headers
e Generates a custom Makefile from all other Makefiles
* Created by tools/gen-unified-makefile.py

* You can mostly ignore it

26

How do | create a new back-end?

e Keep your code in a separate repository
* Or contribute it to our repository

* Create a symlink to your code in the extensions folder
* e.g.,, 1ln -s myBackEnd extensions

* Files you have to provide:
 CMakelLists.txt —included in compiler top-level makefile

* You can extend the IR (add new *.def files)

Coding guidelines @ ﬁ

* See files in docs/ folder for coding standards
* Modified Google C++ coding guidelines

* Google’s cpplint.py with our customized rules (in tools/)

* make cpplint will report all errors
* make check will also invoke cpplint

* To inhibit an error you can use in your code // NOLINT
* Butdon’t

IR and Visitors

ir/ir.h and ir/visitor.h

29

Intermediate Representation (IR)

* Immutable C]
* Can share IR objects safely l I
* Even in a multi-threaded environment
* You cannot corrupt someone else’s state Ej

 Strongly-typed (hard to build incorrect programs)

* DAG structure

* No parent pointers

* IR sub-dags can be reused
* in practice this happens rarely

* Manipulated almost exclusively by visitors
* IR class hierarchy is extensible

shared sub-DAG

IR <=> P4

* Front-end and mid-end maintain invariant that IR (\%
is always serializable to a P4 program

* Simplifies debugging and testing \\\
* Easy to read the IR: just generate and read P4 -
e Easy to compare generated IR with reference (testing)
* Compiler can self-validate (re-compile generated code)
 Simplifies translation validation (see later)

* Dumped P4 can contain IR representation as comments
Use compiler flags --top4 Passl,Pass2 -v

* IR always maintains source-level position
* can emit nice error message anywhere

]
-

Visitor pattern

* https://en.wikipedia.org/wiki/Visitor pattern

“In object-oriented programming and software engineering, the visitor design
pattern is a way of separating an algorithm from an object structure on which it
operates. A practical result of this separation is the ability to add new operations
to existing object structures without modifying those structures.”

e “Structure” =IR
e “Algorithms” = program manipulations

32

Visitors

IR classes
Add Subtract | VarDecl Parser Control Header
Auto-generated» Base \/ \/ \/ \/ \/ \/
IR ConstantFolding \/ \/
manipulations | pefUseAnalysis v v
(visitors) DeadCode \/ \/

you need

Write only what » inlining v v

Visitor

. Description
FEEE

Inspector
See

ir/pass_manager.h Modifier

Transform

PassManager

PassRepeated

VisitFunctor

PassRepeatUntil

PassIf

Simple read-only visitor that does not modify any IR nodes, just
collects information.

Visitor that does not change the tree/dag structure,
but may “modify” nodes in place.

Full transformation visitor.

Combines several visitors, run in a sequence, manages
backtracking.

Repeats a sequence of visitors until convergence.

Converts a function from Node* to Node* to a visitor.

Repeats passes until a condition is met

Executes a visitor if a condition is met.
34

IR rewriting using visitors

Input DAG

A-»
A

Modified DAG New DAG

Output DAG

A Dead code

35

Chaining visitors

const IR::Node* node;
IR::Visitor v1, v2;

const IR::Node* intermediate = node->apply(vl);
const IR::Node* final = intermediate->apply(v2);

node I intermediate I final

36

IR definition files = Java-like language
interface IDeclaration { } Interfaces (pure virtual bases)

Class hierarchy

abstract Expression { .. }
abstract Statement : StatOrDecl {}

class AssignmentStatement : Statement {

Expression left; R fiolde
Expression right;
dbprint{ out << left << " = " << right; } standardIRmethod

Front-end IR

e ~ 174 concrete classes, 25 abstract classes, 13 interfaces
P4,, (vl.def — 38 classes) and P4, (all other *.def)
* Few classes in common to P4, and P4,

Java-like inheritance
* INode base virtual class
* All IR classes descend from Node (node.cpp)

* Some nodes may implement multiple interfaces
* e.g., IDeclaration and INamespace

e Core abstract classes
* Expression — base class for all expressions
* Type — base class for all types
Statement — base class for all statements
Declaration — base class for many declarations
Type_Declaration — base class for declarations that are also types

38

Learning the IR by example

Front-end and mid-end passes can all dump IR back as P4 source
with IR as comments; use --top4 pass and —v compiler arguments
/ X
<P4Program>(18274)
<IndexedVector<Node>>(18275) */
/ X
<Type Struct>(15)struct Version */
struct Version {

/*
<StructField>(10)major/0
<Annotations>(2)
<Type Bits>(9)bit<8> */
bit<8> major;

39

IR Generated C++ code (fragment)

cIasbsl_AssignmentStatement : public Statement {
public:
. . . const Expression™ left;
Fields (immutable IR fields) const Expression* right; | |
debug print Vvoid dbprint(std::ostream &out) const override 3out << left << " =" << right; }
bool operator==(const AssignmentStatement&a) const {
return Statement::operator==(a)

. && left == a.left
Equality operator, o' right == a.right;

void visit_children(Visitor &v; override;
void visit_children(Visitor &v) const override;
void validate() const override {

Invariant checking ~ CHECK NULIjIeft);

Interaction with visitor.

CHECK_NULL(right); }
const char *node_type name() const {return "AssignmentStatement"; }
Dvnamic tvoe info Static cstring static type_name() {return "AssignmentStatement"; }
y yp IRNODE_SUBCLASS[AssighmentStatement)
AssignmentStatement(Util::Sourcelnfo srcinfo,
const Expression™ left,
Constructor const Expression* right) :
o Statement(srcinfo),
Source position left(left),
right(right)
\ {va idate%); }

IR Definition language (1)

e C/C++ comments are ignored.

* Subset of C++.

* femit/#tend: enclosed text literally copied to to output .h file

* femit_impl/#end: enclosed text literally copied to output .cpp file

* #noXXX: do not emit the specified implementation for the XXX
method

* e.g., #noconstructor, #nodbprint, #novisit_children, #nooperator==

* #apply: generate apply overload for visitors
(rarely needed: makes visitor return same type instead of Node*)

IR Definition Language (2)

inline: Field is not a pointer

static: denotes a static field or method

public, private, protected, virtual, const, namespace: asin C++
field initializers

optional: field is not required in constructor
e Optional field with initializer => can also be set by constructor

NullOK: Field can be a nullptr, otherwise it cannot
method definition or declaration: as in C++

method{ ... }: specifies an implementation for a default method
* method can be 'operator=="

For IR::Operation subclasses some assignments generate methods returning
constant values:

» stringOp: generates cstring getStringOp() const
* precedence: generates int getPrecedence() const

Core IR Methods

e cstring toString() const —string representation for compiler user
(no internal compiler data structures should be exposed)

* void dbprint(std::ostream& out) const - debugging print 4

* bool operator==(const N &a) const - equality comparison
performs double-dispatch on this and argument

* void validate() const —check construction-time invariants
- const char* node_type_name() const - printable class named 1'%
e void visit children(Visitor &v) [const] —called by visitor
* void dump fields(std::ostream& out) const - debugging dump
e constructor; arguments inferred from superclasses and fields

Custom hand-coded IR Classes

 IR: :Node — base of whole class hierarchy

e IR::Vector<T> where Tisan IR: :Node
e TR: :Vector inherits from IR: :Node
e TR: :Vector storesin fact const T* objects.
* TR: :Vector hasits own visitor methods
* Not to be used for other purposes than IR

e IR: :IndexedVector<T>
 Like vector, but maintains a hash-table for IDeclarations for quick look-up by name
* Rejects multiple declarations with the same name

* IR::1ID
* Represents an identifier (including source position)

 However, this is not a subclass of Node
 Stores both the original name (provided by user) and the new internal name

44

Util: :SourcelInfo

./

* Represents the source level file position of an IR construct

* Used to provide nice error messages

* When you create new IR nodes consider adding a relevant source
position; this will be useful for debuggers and error messages

* Resolving an identifier reference in P4-16 only looks up declarations
that are before the identifier; it uses the source info for this purpose!

e Default constructor creates an “invalid” source position
* |Invalid source position is logically before all valid source positions

Extending the IR

 Add IR classes in a *.def file

I ‘K
e Add the def file to the CMakelLists.txt:
« set(IR_DEF_FILES ${IR DEF_FILES} *.def PARENT_SCOPE)

» Add additional c++ IR implementation files to the sources
 set (IR _SRCS ${IR _SRCS} ir.cpp)

 cmake ..; make clean
* Force regeneration of the IR classes and visitors

* See the bmv2 back-end for a simple example

46

Casting IR Nodes

node->1is<T>() —trueif node is a pointer to a subclass of T
node->to<T>() — returns node dynamic_cast-ed to const T*
* node->checkedTo<T>() -like to, throws if conversion to T* fails

* interfaces derive from INode, and not from Node
* To get a node from an INode use INode: : getNode()

const IDeclaration* decl;
const IR::Node* node = decl->getNode();

47

Understanding the front-end IR

* This may seem daunting
* P4 grammar < IR (very close correspondence)
* If you understand the language, you understand most of the front-end IR

* However, a few IR classes have no direct correspondence with language
(e.g., used in representing complex types in type inference)

* E.g., from frontend/parsers/p4/p4parser.ypp:
lvalue '=' expression ';' { $$ = new IR::AssignmentStatement(@2, $1, $3); }

48

Visitors and the IR

* Tightly coupled

* Visitors recursively traverse the IR children nodes

void IR::AssignmentStatement::visit children(Visitor &v) {
Statement::visit children(v);
v.visit(left); Generated code (can be overridden).
v.visit(right);

49

Core Inspector action (pseudo-code)

const IR::Node *Inspector::apply visitor(const IR::Node *n) {

if (visited(n) && visitDagOnce) {
// do nothing

} else { parent 1 6

if (this->preorder(n)) {

visit children(n);

this->postorder(n); 2 preorder
} o n 5 postorder
setVisited(n);

} / \
3

&0

50

} return n; Cmmmn[//j
a

Default implementation Oieliice

* Visitor base class knows about all IR nodes

* Most of the visitor code is generated automatically by ir-generator
* Visitor knows how to create a new node if any child changes

* You will subclass a visitor

* You only need to implement methods for IR node types you care about
* Everything else works automatically

51

Example custom visitor declaration

Repeated nodes produce
the same result

modifies program

class StrengthReduction~final : public Transform {

public:

StrengthReduction() { visitDagOnce

:Node*
:Node*
:Node*
:Node*
:Node*

const
const
const
const
const

s

IR:
IR:
IR:
IR:
IR:

postorder(IR::Sub* expr)
postorder(IR::Add* expr)
postorder(IR::Shl* expr)
postorder(IR::Shr* expr)
postorder(IR: :Mul* expr)

Types of nodes processed

= true; }

override;
override;
override;
override;
override;

Example visitor method

static bool isZero(const IR::Expression* expr) const {
auto cst = expr->to<IR::Constant>();
if (cst == nullptr) return false; Helper function
return cst->value == 0;

}

const IR::Node* StrengthReduction::postorder(
IR: :Add* expr) {
if (isZero(expr->right)) return expr->left;
if (isZero(expr->left)) return expr->right;
return expr;

Example sequence of passes

ReferenceMap refMap;

TypeMap typeMap;

PassManager
new
new

new
new

new

new

s

auto result

Data structures populated by visitors

frontend = { Pass manager = sequence of visitors

ResolveReferences(&refMap, true), Inspector: builds refMap
ConstantFolding(&refMap, nullptr), Transform: uses refMap
ResolveReferences(&refMap), Build refMap for new program
TypeInference(&refMap, &typeMap), Uses refMap, builds typeMap
SimplifyControlFlow(&refMap, &typeMap), Uses refMap and typeMap

StrengthReduction(),

Run all visitors in front-
= program- >apply(fr‘ontend) > endon program in

sequence.

Core Transform action (pseudo-code)

const IR::Node *Inspector::apply visitor(const IR::Node *n)

{

auto copy = n->clone();
auto preorder_result = preorder(copy);

if (preorder result != copy)
copy = preorder_result->clone();
copy->visit children(*this); parent
auto final = postorder(copy); B
if (*flnal | = *n) orrlglnalnode
n = final,; o
return n; [:copy | . " J

s [T) [0

The original node

* In each visitor method the Node* handed to the method is a clone of the original node
* If you store Node* (e.g., in a hash-table) this is a problem
* You can use the getOriginal () method to access the original node

const IR::Node* SubstitutionVisitor::preorder(IR::Type Var* tv) {
auto type = bindings->lookup(getOriginal());
if (type == nullptr)
return tv;
LOG1("Replacing " << getOriginal() << “\with " << type);
return type;
} tv can never be found in the bindings hash table.

We have to index with getOriginal().
tv is actually a temporary clone of the getOriginal() node.

Controlling the visit order

 All visitors visit the children of a node in the order they appear in the visitor
class definition

* You can control the visit order by calling visit from preorder.
 call prune() to inhibit default traversal order (or return false in an Inspector)

* E.g., in an Inspector:
bool ToP4::preorder(const IR::StructField* f) {
visit(f->annotations); Custom visit order
« . _ . interspersed with
visit (-F >type) o side-effects.
builder.append(" ");

builder.append(f->name);

return false ; Rejcu‘rning .false catfses the cur.rent visitor to stop the traversal.
This is achieved calling prune() in a Transform.

Transforming and controlling the visit order

* Invoke in preorder, call visit, and end with prune
* Call prune() afterall visit() callsonly

const IR::Node* preorder(IR::If* cond) override {
auto pred = visit(cond->pred)->to<IR::Expression>(); Custom visit order.
Needs upcast.

prune(); Inhibit standard visit order.
return new IR::IfStatement(cond->srcInfo, pred, t, f);

¥ Returns a different class than it is visiting.

58

Where am | (and how did | get here)

« getContext() can tell you how you were reached by the visitor
In the IR DAG

* |t points to your parent node

« findContext<T>() will find an ancestor context for a node of type T

const IR::Node* Movelnitializers::postorder(
IR::Declaration Variable* decl) {

if (getContext() == nullptr)
return decl;
auto parent = getContext()->node;
if (!parent->is<IR::P4Control>() &&
Iparent->is<IR::P4Parser>())

// We are not in the local toplevel declarations
return decl;

parent
[grand node
t context
paren
parent

d
[parent} [parent}no e

Initializing a visitor

* method init apply is called by apply before starting the traversal

* method end_apply is called at the end of the traversal
(but beware that argument Node may have changed between these
two calls in a Transform)

Visitor::profile t
TypeChecker::init _apply(const IR::Node* node) {

LOG2(’Starting type checking”);
return Transform::init apply(node);

60

Deleting an IR::Node

chenodeispancﬁaixwenfsIR::Vector,IR::NameMap or IR: :IndexedVector
you can just return nullptr

const IR::Node* RemoveUnusedDeclarations::preorder(IR::P4Table* cont) {
if (!refMap->isUsed(getOriginal())) {
::warning("Table %1% is not used; removing", cont);
LOG3("Removing " << cont);
cont = nullptr;

¥

prune();
return cont;

61

Inserting an IR::Node

* If the node is stored in an IR: :Vector<T> or IR::IndexedVector<T>, you can return
an IR: :Vector<T> /IR::IndexedVector<T> and it will be spliced within the parent

* You must use the correct T

const IR::Node* SpecializeBlocks: :postorder(IR::P4Control* cont) {
auto insertions = blocks->findInsertions(getOriginal());
if (insertions == nullptr)
return cont;

auto result = new IR::Vector<IR::Node>(); |
result- >push_back (cont) ; All P4Control nodes are in a Vector<Node>

. . Keep original node too
for (auto bs : *insertions) { b orie
auto newcont = createNewControl();

Newly created node to insert after cont
result->push_back(newcont);

¥

return result;

| want to convert the program to something else
(e.g. JSON)

* Use an Inspector
* Keep a std: :map<const IR::Node*, Util::IJson*> map;

void postorder(const IR::Operation Binary* expression)
override {
auto e = new Util::JsonObject();
e->emplace("op", expression->getStringOp());
auto 1 = get(map, expression->left);
e->emplace("left", 1);
auto r = get(map, expression->right);
e->emplace("right", r);
map.emplace(expression, e); // actual result

Error reporting

* Use : :error() and : :warning() for user-induced errors

* These use boost::format format-strings, e.g.,

::error("Array indexing %1% applied to non-array type %2%",
expression, type->toString());

* These are smart about handling IR classes and source-level information, e.g.:

file.p4(17): error: Array indexing [] applied to non-array type int<2>
c = a[2];

NNNN

* They call the toString() method on IR classes involved
* One should not expose compiler data structures in error messages

64

Debugging hints (|

* To debug the build use make V=1
* To debug P4 parsing set YYDEBUG=1 before running the compiler

* To get a stack trace on a compiler crash:
* (in your back-end you must setup_signals() in main (in 1lib/crash.h))
* run with -Tcrash:1

 Use catch throw in gdb to break on exceptions
e Set a breakpointon : :errorin lib/error.h to break on errors

 Valgrind is not compatible with the garbage collector library

* If you want to run the compiler with valgrind disable the GC:
e cmake .. -DENABLE_GC=O0OFF
* Of course, you will have lots of leaks

Compiler bugs 5%%\

* Use the BUG() macro to signal compiler bugs. This macro always throws.
 Same arguments as for : :error
* One can expose internal data structures when calling BUG

* Don’t use assert
e Use CHECK _NULL() to check for null pointers

* Use BUG_CHECK () = assert + BUG in one macro
e BUG_CHECK(!type->is<IR::Type_Unknown>(), "%1%: Unknown type", f);

e Use PAC_UNIMPLEMENTED to signal a feature not yet implemented (throws)

|]]]
Determinism l ;.

,- \../‘V
* Keep the compiler deterministic -

* Front-end and mid-ends are all deterministic
* Each node has a unique ID
* (However, clone() preserves the uniquelD!)
* If code is deterministic unique IDs should be reproducible in different runs

* IDs can be used for setting up breakpoints
* e.g., in Node::trace_creation

* Use ordered map (instead of std: :map) and
ordered_set (instead of std: :set) if you plan to iterate

Node id

Dumping IR

.:dump(const IR::Node*)

dumps the internal IR
representation of a node as
human-readable text Fields

But using the --top4 —v
combination is much easier

Children are
indented

Node type (class)

[1067] P4Program
declarations: [14] IndexedVector<Node>

[26] Type_Struct name=P
annotations: [15] Vector<Annotation>
fields: [16] IndexedVector<StructField>
[21] StructField name=f1l
annotations: [17] Vector<Annotation>
type: [20] Type Bits size=32 isSigned=0
[25] StructField name=f2
annotations: [22] Vector<Annotation>
type: [24] Type Bits size=32 isSigned=0
[37] Type Struct name=T
annotations: [27] IndexedVector<Annotation>
fields: [28] Vector<StructField»>
[32] StructField name=t1l
annotations: [29] Vector<Annotation>
type: [31] Type Bits size=32 isSigned=1
[36] StructField name=t2
annotations: [33] Vector<Annotation>
type: [35] Type Bits size=32 isSigned=1

Debugging logs

* Use the LOG*() macros to log internal data structures
e the LOG macros call the dbprint() method on IR objects
 LOG1("Replacing " << id << " with " << newid);
 dbp(const IR::Node*) isan abbreviated dbprint

* Logging is controlled from the command-line with the —T flag:
* -Tnode:2,pass_manager:1
* logs at level 2 in file node.cpp, and level 1 in pass_manager.cpp

* To specify a header file you must use the full file name
* E.g., -TinlineCommon.h:3

* E.g., -Tpass_manager:1 will print passes as they are executed

69

What is the hard part?

* Keeping track of various node versions
* New versions of nodes are created while transformations occur

* Even nodes that you are not touching
* the ancestors of the nodes you are touching

* References to nodes may become stale
* pointing to old versions of the nodes, no longer in the IR tree

 so your carefully constructed maps may need to be reconstructed if you do anything
* e.g., ReferenceMap, TypeMap

* In general, you cannot run two Transforms in sequence if they use some
precomputed data structures, since the first will change the program and
invalidate the maps

Useful helper classes

* MethodInstance -> applied to a MethodCallExpression, extracts lots of
useful information statically

* ConstructorCall -> like MethodInstance, but for ConstructorCallExpressions
* Enumlinstance -> helps resolve Enum fields

e ParameterSubstitution -> represents a binding of Expressions to
Parameters

e Use P4::SubstituteParameters to apply a substitution
* P4Corelibrary -> represents core.p4 library

* TableApply -> helps resolve expressions on tables:
* table.apply().hit
 table.apply().action_run

e CallGraph: performs topological sorting,
including strongly-connected component computation

71

YELLOWSTONE NATIONAL

A
&
r
o

Absaroka-Beartooth
Gardiner

Wikderness
inero
40 km
0 s 20 miles

Mid-end passes

Cooke Montana
City
oMammoth Lanuar
Tower © Valley
Hebgen Rooseve
Lake
Yellowston ° YELLOWSTONE
U Grand Y0 NATIONAL PARK
U N L ake Village
°
Norris Geyser
Old Faithful, Masio
Caribou- o Yellowsbome Wapiti Valles
tArghed Laks
National Village S
idaho Forest Hearr - 5\:;:‘."':'"‘
Lo l?' Forest
. T Jobn D ;=
Grand Tet - g
an;‘llnlu,ual Purk R";:f::'.:,":l"' B Wyoming
Jackson Parkway
Lake JColter Bay Village

72

P4.,(v1.0/1.1) front-end

* Code in frontends/p4-14

 Parsed using flex / yacc

* Supports almost all of P4,, v1.0 and v1.1
* Some IR classes are only used to represent P4, programs
* Custom P4,, type inference

* Converted to P4, IR

e Uses the vimodel.p4 architectural model

73

vimodel.p4: A P4, switch model

* A P4, switch architecture that models the fixed switch architecture from the P4,, spec
* Provides backward compatibility for P4,, programs

». Parse verity »n Ingress
cksum

egress *compute» de arse»
5 cksum P

74

Parsing P4,

* Parser written using flex and bison
 Grammar is sometimes difficult to express using bison capabilities

* Parser, lexer and symbol manager cooperate to resolve identifiers
* Lexer distinguishes types from regular identifiers using symbol table
* symbol table.h/cpp

[[[[[

Important P4, classes

* Toplevel element is IR::P4Program !‘
* |R::Constant — integer literal (uses libgmp for arbitrary precision) z
* |R::
* |R::
* |R::
* |R:
* |R::
* |R::
* |R::
* |R::
* |R::
* |R::
* |R:

1!

IDeclaration — interface for all classes that introduce a new name
INamespace — interface for all classes that introduce a new scope
P4Table —a P4 table (“V1Table” is used for P4 ,,)

:P4Parser, IR::P4Control, IR::P4Action — P4, objects

Type_Control — A control block type declaration (also for Parser, Action, Table)
Declaration ID — a declaration that is just an identifier (e.g., in enum)
Declaration_Instance — instantiates a compile-time object calling a constructor
Parameter — function/method/block parameter

Type_ Extern —represents an extern block type

TypeSpecialized — e.g., ext<bit<32>>, where ext is an extern

:TypeNameExpression —e.g., enum X {b } Xx = X.b;

76

Most important passes

* Need to be rerun every time the program changes
* ResolveReferences
* Typelnference

* Evaluator
* Run after front-end and mid-end
* Builds the hierarchy of statically allocated resources

77

ResolveReferences

* Most frequently used pass
* Called almost every time the program IR changes

* Fills a ReferenceMap
* Maps each Path to a declaration
* See below for a description of the ReferenceMap

e (Does not do anything if the program has not changed since the last invocation)

* |t must be run starting at the toplevel P4Program
e Otherwise it may complain about unknown symbols

* Can optionally warn about shadowed symbols

e Scans namespaces inside-out:
* |IR::ISimpleNamespace — at most one declaration with a given name

* |IR::IGeneralNamespace — allows multiple declarations with the same name (e.g., extern

methods)
78

Program IR
ReferenceMap

ReferenceMap Fy

declarations

uses O IR
* |R::Path generalizes identifiers

. O
* |R::Path can appear in two contexts
* |IR::PathExpression: an expression that refers to a name (name is a Path)
* IR::Type_Name: an expression that refers to a type by name (name is a Path)

* |R::Member represents a field access

* ReferenceMap core methods:
e const IR::IDeclaration* getDeclaration(const IR::Path* path) INode that introduced symbol referred.

* cstring newName(cstring base) Fresh unique name within the program.
* ResolveReferences fills a ReferenceMap

. Nofte: source position is important: some references are only resolved to previous
definitions

References example

P4Program
declarations=Vector<Node>[3]
O=Declaration_Constant, name=x
type=Type_Bits, size=8, isSigned=0
initializer=Constant, value=10
1=Type_Struct, name=S
fields=Vector<StructField>[1]
0=StructField, name=s
type=Type_Bits, size=8, isSigned=0
2=P4Action, name=a
parameters=ParameterList
parameters=Vector<Parameter>[2]
O=Parameter, name=w, direction=in

const bit<8>[x/= 10;
struct|Si{ bit<’,8> Si
|

action atin-S|W, out bit<8>)
{ t1

|

z|=|x/+ W.s;

A A

type=Type_Name
path=S
1=Parameter, name=z, direction=out
type=Type_Bits, size=8, isSigned=0
body=Vector<StatOrDecl>[1]
O=AssignmentStatement

left=PathExpression
path=z

right=Add
left=PathExpression

path=x
right=Member

expr=PathExpression
path=w
member=s

Program IR

. TypeMap
Type checking
O
e class Typelnference
* Needs a ReferenceMap é
* Checks program typing IR fypes ¥
 Computes values for type variables ®

* Inserts explicit casts where needed
* If no casts are needed it should behave like an Inspector and not change the IR
* Produces a TypeMap

* for each node that has a type the map stores its canonical type

* the canonical representation is not part of the IR program DAG
(e.g., struct always uses TypeName for fields, but canonical struct has actual field types)

* not all IR nodes have types

Type checking algorithm

* Somewhat complicated due to generics
* Infers values for unspecified type-variables

e Uses Hindley-Milner (unification) algorithm

* adapted from
http://cs.brown.edu/~sk/Publications/Books/ProglLangs/20
07-04-26/plai-2007-04-26.pdf, page 280

* The pass ClearTypeMap erases the typeMap; it should
be called when the types of some objects may change
(e.g. convert enum to integers)

82

http://cs.brown.edu/~sk/Publications/Books/ProgLangs/2007-04-26/plai-2007-04-26.pdf

Evaluation

* P4::Evaluator

* Should be called after the front-end and mid-end
* Represents each program resource as a Block

* Blocks form a DAG

e children of a block are “allocated” within that block

* Each persistent resource has a block
e parser, control, packages, externs, tables

* Each block maps IR nodes to CompileTimeValue s
* A CompileTimeValue is a compile-time constant

Block hierarchy for
simple-switch-example.p4

Toplevel block

Package main
Parser p
Extern
ck
Control pipe
Tabl Tabl
e 9N Tapte || Table
ipvd_ || check_ d
match ttl mac >mac
Control deparser
Extern
ck

The P4, compiler front-end

Front-end passes (frontends/p4/frontend.cpp)

* Pretty printing

* Validation

* Name resolution

* Create control-plane names for keys

* Type checking/type inference (Hindley-Milner)

* Make order of side-effects explicit (argument and short-circuit
evaluation)

* Optimizations
* Compile-time evaluation
* Inlining

e Conversion to P4 source

85

FrontEnd: ParseAnnotationBodies

* Since P4-16 1.2.0 annotations bodies can have free form
e (anything between a pair of matched parens)

* This pass parses the bodies of annotations that are known
to need a specific structure and converts them to IR

* E.g.: @name annotation always expects a string argument

Front-end: PrettyPrint

* Emit program as P4, code

* Used to convert P4,, to P4,

e Can optionally emit IR as comments in the code
* Enabled with --pp out.p4 compiler flag

87

Front-end: ValidateParsedProgram \/

* Run immediately after parsing.

* There is no type information at this point, so it does only simple checks.
* integer constants have valid types
* don'tcare _is not used as a name for methods, fields, variables, instances
e width of bit<> types is positive
* width of int<> types is larger than 1
* no parser state is named 'accept’ or 'reject’
e constructor parameters are direction-less
* tables have an actions properties
e table entries list are const
* instantiations appear at the top-level only
» default label of a switch occurs last
 instantiations do not occur in actions
* constructors are not invoked in actions
e returns and exits do not appear in parsers
* exits to not appear in functions
e extern constructor names have proper names
* names of all parameters are distinct
* no duplicate declarations in toplevel program

Front-end: CreateBuiltins

 Creates accept and reject states

* Adds parentheses to action invocations in tables:
e e.g., actions ={ a; } becomes actions ={ a(); }

* Parser states without selects will transition to reject
* Adds default_action when it is missing; adds NoAction to action list

89

Front-end: Constant folding

* Can be run before and after type inference
* More things can be done after types are known
e E.g., fold casts

* Run several times during compilation

* Run prior to type inference to
compute bounds that have to be constant,
e.g.e.g., bit<(3+4)>

* Also handles some select expressions,
detecting some unreachable select labels

e Also handles if statements with constant conditions

90

FrontEnd: InstantiateDirectCalls v

i !‘E?!%d

* Convenient syntactic sugar when something is called exactly once

control c() { apply {} }
control d() { apply { c.apply(); }}

* Converts direct invocations of controls or parsers
into separate instantiations and calls

becomes

control d() {
@name("c") c() c_inst;
apply { c_inst.apply(); }}

91

FrontEnd: Deprecated

e Gives warnings if one uses constructs annotated with @deprecated

FrontEnd: CheckNamedArgs

* Checks that named arguments in calls have distinct names
* All arguments must be named or not

* Optional parameters do not have default values

92

FrontEnd: CheckNamedArgs

 Either all or none of the arguments in a method call may be named.
* No argument appears twice in a call.
* No optional parameter has a default value.

Hello

my name is

93

FrontEnd: ValidateMatchAnnotations

* Checks that “match” annotations have a single argument
e Of type match_kind

Front-end: BindTypeVariables

* Type inference should infer values for all type-variables d

* This pass replaces type variables with concrete types
* Constructors, method calls, generic types

packet.emit(headers.ipv4);
becomes

packet.emit<IPv4_h>(headers.ipv4);

95

FrontEnd: SpecializeGenericTypes

* Replaces all generic types with a concrete type with the same contents
* For example:

struct S<T> { T data; }
S<bit<32>> s;

becomes

struct SO { bit<32> data; }
SO s;

96

FrontEnd: DefaultArguments

e Substitute default arguments when they are not provided

* For example, convert:
void f(in bit<32>a = 0);

f();

to

f(a =0);

FrontEnd: RemoveParserlfs

e Convert an if in a parser into a set of new states

* One pass just wraps the other

state s {
statementl;
statement2;
if (exp)
statement3;
else
statement4;
statement5;
transition selectExpression;

}

state s {
statementl;
statement2; state s_false {
transition select(exp) { statement4;
true: s_true; transition s_join;
false: s_false; i
} . .
} state s_join {
statement5;
state s_true { } transition selectExpression;

statement3;
transition s_join;

}

FrontEnd: Structlnitializers

* Converts ListExpression to StructExpression where necessary
* StructExpressions have both the type and the field names explicit

=
2

OOO000000O00O00o0od

FrontEnd: SpecializeGenericFunctions

* Given a function with generic type create a specializ

T f<T>(in T data) { return data; }

bit<32> b = f(32w0); GEN
Generates the following extra code:

bit<32> f 0(in bit<32> data) { return data; _
bit<32> b = ¥ 0(32w0);

100

Front-end: TableKeyNames

* Creates a control-plane name for each table key field.
* This enables the compiler to change these expressions later

table t { key

{ a.x; } .. }
becomes

table t { key = { a.x @name("a.x"); } .. }

Front-end: StrengthReduction

* Purely syntactic
* Rewrite div/mod/multiply by powers of two

* Also does some algebraic optimizations
* add/subtract with 0, shift with zero
* multiply/divide with 0 or 1
* bitwise operations with constants
 DeMorgan laws

Front-end: UselessCasts

* Removes casts where the input and
output types are the same

FrontEnd: Reassociation

* Bring together constants in associative operations
e E.g. (a+2)+3isrewrittenasa+ (2 + 3)

* Facilitates constant folding

103

Front-End: SimplifyControlFlow

e Remove useless nested block statements
* Simplify if statements with no branches
e Remove empty statements

 Remove unused switch statement labels and empty
switch statements

* Removes switch statements with no cases

104

FrontEnd: SwitchAddDefault

* Completes switch statements that do not have all cases covered
* Adds a ‘default: {} at the end

105

Front-End: RemoveAllUnusedDeclarations

* Repeatedly eliminates all declarations that are never o
referenced in the program '.]

e control, parser, action, table, variables, parser states

* This is not the same as def-use analysis

* But it does not remove parameters, types, enum members

*i\\"
m\\\m\\\ l'm\\

Front-End: SimplifyParsers

* Remove unreachable parser states l\\m

* Collapse straight chains of parser states

Front-End: ResetHeaders

* Inserts code for header.setlnvalid() where required
* Spec indicates that uninitialized headers are invalid

Front-End: SetHeaders

* Headers initialized from lists must also be setValid()
* h={x}; becomes h.setValid(); h={x };

107

Front-end: UnigueNames

* Give each variable in the program a unique new name

e If it isimportant (e.g., control-plane visible)
preserve the old name as a @name annotation.

* Makes it easy to move code around without causing name clashes

Front-end: MoveDeclarations

* Moves all declarations from inner blocks to the outermost scope
* Moves all locals in an action to the enclosing control

108

Front-end: Movelnitializers

* Variable initialization is separated from declaration
* In parsers initialization is done in the start state
* In controls the initialization is done at the beginning of the apply block

bit<32> x = 10;
becomes:

bit<32> x;
X = 10;

109

Front-end: SideEffectOrdering

* Makes evaluation order explicit
* P4 spec mandates left-to-right evaluation order

* Convert expressions such that each expression contains at
most one side-effect — by using temporaries and assignments

* Implement short-circuit evaluation for &&, || and ?: converting these
expressions into if statements

* Side-effects are caused by function/method calls:
 Calls may mutate private hidden state (extern/control-plane state)
* Calls may write to multiple out and inout parameters

* Handles tricky cases such as side-effects in table key computations

110

FrontEnd: SimplifySwitch

e Constant-fold switch statements that have constant expressions
* These turn into the statement after the corresponding label

111

Front-end: SimplifyDetfUse

* Uses abstract representation of all “locations”
(class Storagelocation, class LocationSet)

e Uses abstract representation for “program counter”
(class ProgramPoint, class ProgramPoints)

* ComputeWriteSet: computes the locations written at each program
point (class Definitions)

* Inter-procedural analysis for actions and tables
* Intra-procedural for parsers and controls

* FindUnitialized: finds locations used before being initialized

e RemoveUnused: removes writes to locations that are never read
e But must preserve method/function side-effects

Front-end: SpecializeAll

 Specialize generic code with constructor parameters for actuél types
and constructor arguments

e E.g., consider
control c(out bit<32> o) (bit<32> size)
{ apply { o = size; } }
c(16) c_inst;

this is converted to

control cspec(out bit<32> o) { apply { o = 16; } }
cspec() c _inst;

113

Front-end: RemoveParserControlFlow

* SideEffectOrdering may introduce if statements R—
o . . /
e 1f statements are illegal in parser states .~

* This pass converts such i1f statements into J’
L. .] -~
transition statements by inserting new states |

v

e Shares code with RemoveParserIfs L 4

114

Front-end: RemoveReturns

 Converts return statements into control-flow

* |n actions, functions and control blocks
* In functions there will be exactly 1 return at the end

115

FrontEnd: RemoveDontcareArgs

* Replaces don’t care arguments with an unused temporary
* This can only happen for ‘out’ parameters

116

FrontEnd: MoveConstructors

Converts some constructor invocations into instance declarations.

extern T o
control cgi(T t; { apply { ... } }
control d() {

c(Ti) cinst;

apply S

is converted to

extﬁran 3 Zf't§ ; 1y ¢ -
control c a . e
control d 3 { PP2Y

g%mg?péinst

apply ' { ... }}

* Inline ca
* Inline ca
* Inline ca
* Inline ca

“ront-end: h
nline, InlineActions, InlineFunctions

s to controls from other controls

s to parsers from other parsers

s to actions from other actions

s to all functions (from parsers, controls, functions, actions)

* Inlining requires substituting types, and constructor and call parameters

* Inlining is done bottom-up in the call-graph, starting from leaves

* Inlining creates new hierarchical names for control-plane visible objects
(tables, actions)

* That’s why it is part of the front-end

* One of the most complicated passes in the whole compiler

Front-end: LocalizeAllActions

* Create one action clone for each table using it

* This way actions in different tables can be optimized separately

Front-end: UniqueParameters

* Give unique names to action parameters

* In preparation for parameter removal

Front-end: HierarchicalNames

* Gives proper hierarchical names to nested objects

119

FrontEnd: RemoveActionParameters

 After this pass actions only have control-plane parameters

* The parameters are replaced by variables in the enclosing control

FrontEnd: CheckConstants

* Makes sure that some methods that expect constant arguments have
constant arguments (e.g., push_front).
* Checks that table sizes are constant integers.

P4, . Compiler Mid-end Passes

Collection of passes that can be assembled by target compiler writers
into a custom architecture-specific mid-end

121

MidEnd: RemoveMiss

* Convert table.apply().miss into !table.apply().hit

Mid-end: SimplityKey

» Uses a user-supplied policy to decide whether the expression fc
computing a table key is too complex

* The key computation can be turned into additional statements

Mid-end: EliminateNewType,
EliminateTypedet

* Removes types declared with type X Y
or typedef X Y

* Replaces Y with X everywhere

Mid-end: EliminateSerEnums

 Removes enumerations with a backing type enum bit<10> E { .. }

* Replaces then with the underlying bit type 0
(iif)
(i)

123

Mid-end: SimplitySelectCases

* If required checks that all select statement labels are constant

* Removes provably unreachable select labels

Mid-end: CompileTimeOperations

* Makes sure that all compile-time only operations have been
removed (e.g., division, modulo)

Mid-end: RemoveExits EXIT
40

MPH

 Converts exit statements into control-flow

* Inter-procedural: an exit in an action causes the whole control to
terminate

Mid-end: OrderArguments

5
.
.
5
b ¢

* Orders calls with named arguments in the order of parameters 2
e Can be done only if there are no optional parameters

8"
<
X

Mid-end: ExpandEmit

* Converts calls to packet_out.emit with arguments that are structures
and arrays into multiple calls, one for each field/element

Mid-end: ExpandLookahead

struct S { bit<32> f; bit<32> g; }

—
X = p.lookahead<S>() @

is converted to:

)

*)

bit<64> tmp = p.lookahead<bit<64>>();
x = { tmp[63,32], tmp[31,0] };

MidEnd: HandleNoMatch

* Handles select expressions that do not have a default label
state s { transition select (e) { ... } }

Is converted into:

state s { transition select (e) { ... default: noMatch; }}

state noMatch { verify(false, error.NoMatch);
transition reject; }

Mid-End: EliminateTuples,
CopyStructures, NestedStructs,
SimplityComparisons

* Convert tuple<> types to structures

e Convert structure assignments and comparisons to operations
between the structure fields (including structure initializers)

* Convert deeply nested structure types to simply-nested structures

* But it cannot modify parameters to controls or parsers: these are part of
the architecture APls

* In the end structures can only contain scalars, headers or stacks

Mid-end: ConvertEnums, FillEnumMaps

* Use a user-supplied policy to convert enum types to bit<> types
* Does not convert enums that are part of the architecture specification
* Preserve enum to value mapping for backend if necessary

Mid-end: LocalCopyPropagation

* Removes some temporary variables

129

MidEnd: RemoveSelectBooleans

* On targets that do not support Boolean values, this pass can be used

to convert all Boolean values that appear in select expressions and
labels into bit<1> values

MidEnd: SimplitySelectCases

* If there is just one case label, the select statement is eliminated.

* If a case label appears after the default label, the case is unreachable
and therefore eliminated.

MidEnd: SimplifySelectList

* Remove nested types from select expressions
transition select(a, b, {c, d}) {

(0, 0, default): accept;
(0, 1, {default, default}): accept; }

Is converted to:

transition select(a, b, c, d) {
(0, 0, default, default): accept;
(0, 1, default, default): accept; }

MidEnd: FlattenHeaders,
FlattenlnterfaceStructs

e Converts structs inside headers into lists of fields

e Converts nested structs that are arguments to controls or parsers into
flatter types

132

MidEnd: ReplaceSelectRange

. Convcﬁrts a select with a range set expression into a sequence of ternary
matches

(16w0x800, 8w0x8 .. 8w0x10, 8wOx6 &&& 8w0x11): ipv4;

* is converted to:
(16w0x806, 8W0Ox8 &&& 8wOxf8, 8wWOx8 &&& 8wO0xf8): ipv4;
(16w0x806, 8w0x8 &&& 8wO0xf8, 8w0x10): ipv4;
(16w0x806, 8w0x10 &&& 8wOxfe, 8BwOx8 &&& 8wO0xf8): ipv4;
(16w0x806, 8w0x10 &&& 8wOxfe, 8w0x10): ipv4;
(16w0x800, 8w0x8 &&& 8wO0xf8, 8w0x6 &&& 8w0x11): ipv4;
(16w0x800, 8w0x10, 8w0x6 &&& 8w0x11): parse_ipv4;

MidEnd: Predication

* For targets that do not support conditionals in actions, it converts if
statements in actions into ?: statements

* May not always be possible
if (e) a = f(b);

|s converted to:

a=¢e? f(b) : a;

Mid-end: ValidateTableProperties

e Uses a user-supplied policy to checks that that there

are no unknown table properties

Mid-end: ParsersUnroll

Attempts to remove cycles from parser graph

Based on a symbolic evaluation of the P4 program

Substitutes the header stacks arguments

The algorithm could be found at docs/parsersUnroll-readme.md

In some back-ends triggered by compiler option: --loopsUnroll

STOP

PRIVATE PROPERTY

NO
TRESPASSING

-~

SN
I
7 'g'o 5
gl
7

g
Q
§

N
2=
PSS
c'.‘
)
%)

e
A7T2

7
T/
(/7
l,f
W
A\
‘\
02

135

Mid-end: ParsersUnroll

Simple example

struct headers {

veey

srcRoute_t[2] srcRoutes;

}

parser MyParser(..., out headers hdr, ...) {

state parse_srcRouting {
packet.extract(hdr.srcRoutes.next);

transition select(hdr.srcRoutes.last.bos) {

default:

parse_srcRouting;

state parse_srcRouting {
packet.extract(hdr.srcRoutes[0]);
transition select(hdr.srcRoutes.[0].bos) {

default:
parse_srcRoutingl;

}
}

state parse_srcRoutingl {
packet.extract(hdr.srcRoutes[1]);
transition select(hdr.srcRoutes.[1].bos) {

default:
parse_srcRouting2;

}
}

state parse_srcRouting2 {
transition stateOutOfBound;
}
state stateOutOfBound {
verify(false, error.StackOutOfBounds)

}

Mid-end: SynthesizeActions

* Convert assighment statements in control blocks into actions and
action invocations

Mid-end: MoveActionsToTables

* Move all actions that are invoked directly into private tables that have
only a default action

137

MidEnd: RemoveleftSlices

* Removes slice operations [m,l] on the left-hand side of an assignment
alm:1] = e;

Is converted to

a = (a & ~mask) | (((cast)e << 1) & mask);

138

MidEnd: TableHit

* Some architectures can only evaluate table.apply().hit expressions inside
conditionals

tmp = t.apply().hit

Is converted into:

if (t.apply().hit)
tmp = true;
else
tmp = false;

139

MidEnd: EliminateSwitch

e Converts switch statements that operate on enums or unions into a
switch on table applications and actions

140

MidEnd: ValidateTableProperties

* Makes sure that all properties that appear in tables are known
by the current architecture (e.g., implementation)

MidEnd: SimplifyBitwise

e Optimizes some bitwise patterns (e.g. A & C1 | b & C2) with exclusive
masks

MidEnd: RemoveAssertAssume

* If not in debug mode completely delete ‘assert” and ‘assume’ calls

142

MidEnd: SingleArgumentSelect

* Convert select(a,b) into select(a ++ b)
* This does not handle don’t cares properly, though

MidEnd: ComplexComparisons

* Converts equality comparisons for structs into equality comparisons
for all their fields

143

Low-level IR

* Front-end and mid-end passes:
* eliminate some IR constructs
* optimize the IR for a “lower” cost

e Resulting IR is still convertible to P4, but much simpler

» After front-end:
* Each declaration has a unique name
* Each statement has a single “side-effect” (but can write to multiple left-values)
* All calls can be implemented with copy-in/out or call by reference (no aliasing between arguments)
* Variables have no initializers
* All variable declarations are at the top-level scope
* No type variables exist
* All integer constants have a known width
* No constant declarations exist
* No unused declarations, no unused assignments, no unreachable parser states
* No divisions, modulo
* No nested block statements; no empty statements

» After mid-end (optional, depending on target):
* Each action is used in only one table
* No return and exit statements
* No function, control and parser invocations — all are inlined
* No parser cycles —all are unrolled
* No actions called from other actions
* Actions have only control-plane parameters
* No nested struct types, no enum types, no tuple types
* All code in actions; all actions in tables

Sample back-ends

* p4test: back-end used for testing
e p4c-ebpf: P4 => C compiler; C can be compiled to EBPF using BCC or CLANG

 pdc-bm-ss: P4 =>JSON compiler; JSON can be loaded by the BMv2 behavioral simulator
simple_switch model

145

pdtest

* Fake back-end
e Used for testing the P4 front-ends and mid-ends

* Contains a significant sample mid-end

* Compile files and dump P4 representations
* Works for both P4, and P4

146

Testing the compiler

* Dump program at various points and compare with reference
 Compare expected compiler error messages (on incorrect programs)

P4 [>I p4c I|:> stderr

P4 P4 P4
| I || |
P4 P4 P4 errors Expected output

 Recompile P4 generated by compiler

P4[>I pac II:>P4|:>I pAac |

* Run vlmodel.p4 programs using BMv2 on packet traces and compare to
expected output p4 [> | pac | [> ison expected

C packet trace

|
packet trace [> BMv2 simulator [> packet trace

* Run ebpf_model.p4 programs using C in user-space

. 1. ABCDE
Running tests 2. AB CA\E
3. ABCD

heck: I| test 4%8(.:8E

checCkK: runs all tests ..OOOO

* MakKe
* make
* mMake
* mMake
* make

* mMake

recheck: runs all tests that have failed last time

C
C
C
C

neck-bmv2: run all bmv2 tests
neck-<pattern>: run tests that match this pattern
pplint: runs the code style checker

neck PTEST_REPLACE=1: runs tests and replaces all

reference outputs. Use with great care, only if you have confirmed
that the new reference outputs are all correct. See next slide about
replacing individual reference outputs.

Debugging failed tests ,hnzpsﬂ

$ grep "FAIL: test-suite.log
FAIL: bmv2/testdata/p4 16 samples/mytest.p4
$./bmv2/testdata/p4 16 samples/mytest.pd.test -v Run test in verbose mode

$./bmv2/testdata/p4 16 samples/mytest.pd.test -b Keep test temporary files
Writing temporary files into ./tmpgI8qgh

$./bmv2/testdata/p4_16 samples/mytest.pd.test -f Overwrite test reference outputs

149

Tests that fail in simulation

* Rerun test to save temporary files

$./bmv2/testdata/p4 16 samples/mytest-bmv2.pd.test -v -b

Writing temporary files into ./tmp_ cEFKF

Executing ./pd4c-bm2-ss -o bmv2/testdata/p4 16 samples/mytest-bmv2.7json
../testdata/p4 16 _samples/mytest-bmv2.p4

Exit code ©

Check for ../testdata/p4 14 samples/bridgel.stf

$ cd tmp cEFKF
e Rerun the simple_switch simulator manually using the bmv2stf.py script:

$../../backends/bmv2/bmv2stf.py -v ../bmv2/testdata/p4 16 samples/mytest-bmv2.json \
../../testdata/p4_16 samples/mytest-bmv2.stf

150

BMv2 back-end

* p4c-bm2-ss

* Target is the software switch simple switch
implemented using BMv2 (Behavioral Model version 2)
https://github.com/p4lang/behavioral-model

* Handles most P4,, programs
* Converts program to a P4, representation
* Uses the vimodel.p4 architecture

* Can handle simple P4, programs written for the vimodel.p4
architecture

* Emits json that can be consumed by simple switch

151

https://github.com/p4lang/behavioral-model

P4,, to P4, conversion

core.p4

' #include

vlimodel.p4

l #include
T e L e .
program program

converter

Part of the standard front-end.

152

Running BMv2

P4,
program

or

P4,
program +
vlimodel.p4

p4c-bm2-ss

table management
commands

V4

simple_switch_CLI
(control-plane)

p.json

lL RPC (Thrift)

simple_switch
(BMv2

data-plane
Packets in |:> simulator) > Packets out

Testing the BMv2 back-end

simple test
framework

p.stf

run-bmv2-
test.py

P4,

program

or

P4,

program +
vlimodel.p4

p4c-bm2-ss

p.json

Currently open-loop testing only (no control messages received from simulator).

table management
commands

V4

simple_switch_CLI
(control-plane)

lL RPC (Thrift)

simple_switch
(BMv2

pipe

. data-plane
:> simulator) :>

pipe

expected
packets

)

> compare

Simple test framework language

Priority
Key value
Table name Table key field (hex, bin or oct) Action name Action data

add testl 0 data.fl:0x****0101 setbl(val:0x7f, port:2)

add ex1l 100 extra$0.h:0x25** actl(val:0x25) Add table entries
setdefault test compare() Set default action
expect 2 00000101 ***xkkxx *x*x*k 7+ 66 Expected packets
packet 0 00000101 00000202 0303 55 66 7777 88 00
expect 3 00000202 **xkikkkx xkikx g7 66 Sent packets
packet 2\?@@002@2 00ROV 303 0404 55 66 7777 88 @9
Y

Packet contents in hex (prefix of contents for received packets)

comment

Switch interface
* = don’t care

Compiling and running switch.p4

* The largest public P4 program: see https://github.com/p4lang/switch
 Lots of available tests (PTF tests)
* You use the new P4 compiler to generate a JSON file

* You use the old P4 compiler to generate the control-plane APIs from
the JSON

* Modify the switch/p4-build/bmv2/Makefile.am as follows:

- PYTHONPATH=$$PYTHONPATH: $ (MY_PYTHONPATH) $(P4C_BM) --pd $(builddir)/p4_pd/ --p4-prefix
$(P4_PREFIX) --json $(builddir)/$(P4_JSON_OUTPUT) $(P4_PATH)

+ $ (PACNEW) -0 $(builddir)/$(P4_JSON_OUTPUT) --p4-14 $(P4_PATH)

+ PYTHONPATH=$$PYTHONPATH: $(MY_PYTHONPATH) $(P4C_BM) --pd-from-json --pd
$(builddir)/$(P4_NAME) --p4-prefix $(P4_PREFIX) $(P4C_BM_FLAGS)
$(builddir)/$(P4_JSON_OUTPUT)

* Make PACNEW point to p4c-bm2-ss 156

https://github.com/p4lang/switch

eBPF Back-end

* https://en.wikipedia.org/wiki/Berkeley Packet_Filter

* Compiles programs written for ebpf _model.p4

* Converts IR to a restricted subset of C, which can be further compiled
using LLVM to eBPF

e Can be used to program the Linux kernel
* Currently restricted to writing packet filters

Testing the eBPF back-end in user-space

simple test
framework

p.stf

P4 program for
ebpf_model

run-ebpf-
test.py

p4c-ebpf

in.pcap

r— I —4 O S BN BN BN BN B B B BN SN N

linked

C program
(table management)

C Program
(compilable to eBPF)

C runtime

H out.pcap

expected

Currently open-loop testing only (no control messages received from simulator).

packets

)

> compare

Testing the eBPF back-end in kernel space

simple test
framework

p.stf

P4 program for
ebpf_model

run-ebpf-
test.py

p4c-ebpf

C Program

linked

Table management

in.pcap

llvm

+ out.pcap

expected

packets

> compare

